jueves, 24 de octubre de 2019

Graficación 3D


Modelo hecho en 3D:








En computación, un modelo en 3D es: “Un mundo conceptual en tres dimensiones”.
Un modelo 3D se ve de dos formas distintas:
  • Desde un punto de vista técnico, es un grupo de fórmulas matemáticas que describen un “mundo” en tres dimensiones.
  • Desde un punto de vista visual, valga la redundancia, un modelo en 3D es un representación esquemática visible a través de un conjunto de objetos, elementos y propiedades que, una vez procesados (renderización), se convertirán en una imagen en 3D o una animación 3d.
La representación de los objetos en tres dimensiones sobre una superficie plana, de manera que ofrezcan una sensación de volumen se llama Perspectiva. Se representan los objetos sobre tres ejes XYZ. En el eje Z, se representa la altura. En el eje Y, se representa la anchura y en el eje X, se representa la longitud. Los distintos tipos de perspectivas dependen de la inclinación de los planos Los sistema más utilizados son la isométrica, la caballera y la cónica.

Espacio tridimensional 


El espacio 3D es un espacio matemático virtual creado por el programa de diseño 3D. Este espacio está definido por un sistema cartesiano de tres ejes: X, Y, Z. El punto donde salen las líneas virtuales que definen los ejes se llama origen y sus coordenadas son (0, 0, 0). En este espacio virtual se crean, modifican y disponen los diferentes objetos tridimensionales que van a componer la escena. 



La representación tridimensional es conveniente cuando la visualización de una tercera magnitud, típicamente la elevación del terreno, resulta útil para la interpretación de los datos que se quieren mostrar. Se presentan a continuación algunos de los usos más comunes.




PROYECCIONES

Existen dos métodos básicos para proyectar objetos tridimensionales sobre una superficie de visión bidimensional. Todos los puntos del objeto pueden proyectarse sobre la superficie a lo largo de líneas paralelas o bien los puntos pueden proyectarse a lo largo de las líneas que convergen hacia una posición denominada centro de proyección. Los dos métodos llamados proyección en paralelo y proyección en perspectiva, respectivamente, se ilustran. En ambos casos, la intersección de una línea de proyección con la superficie de visión determinada las coordenadas del punto proyectado sobre este plano de proyección. Por ahora, se supone que el plano de proyección de visión es el plano z = 0 de un sistema de coordenadas del izquierdo.





PROYECCIÓN EN PARALELO

Una proyección en paralelo preserva dimensionar relativas de los objetos y esta es la técnica que se utiliza en dibujo mecánico para producir trazos a escala de los objetos en las dimensiones. Este método sirve para obtener vistas exactas de varios lados de un objeto, pero una proyección en paralelo no ofrece una presentación realista del aspecto de un objeto tridimensional.




Las vistas formadas con proyecciones en paralelo se pueden caracterizar de acuerdo con el angulo que la dirección de proyección forma con el plano de proyección. Cuando la dirección de proyección es perpendicular al plano de proyección, se tiene una proyección ortogonal.Una proyección que no es perpendicular al plano se denomina proyección oblicua.




PROYECCIÓN ORTOGONAL

La Proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección (o a la recta de proyección), estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.

Existen diferentes tipos:

  • Vista A: Vista frontal o alzado
  • Vista B: Vista superior o planta
  • Vista C: Vista derecha o lateral derecha
  • Vista D: Vista izquierda o lateral izquierda
  • Vista E: Vista inferior
  • Vista F: Vista posterior





Las ecuaciones de transformación parea efectuar una proyección paralela ortogonal son directas.Para cualquier punto (x, y, z), el punto de proyección (Xp, Yp, Zp) sobre la superficie de visión se obtiene como Xp=X, Yp=y, Xp=0.

PROYECCIÓN OBLICUA. 

Es aquella cuyas rectas proyectantes auxiliares son oblicuas al plano de proyección, estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.




Una proyección Oblicua se obtiene proyectando puntos a lo largo de líneas paralelas que no son perpendiculares al plano de proyección. La figura muestra una proyección oblicua de un punto (x, y, z) por una línea de proyección a la posición (xp, Yp).




PROYECCIONES PERSPECTIVA

Para obtener una proyección en perspectiva de un objeto tridimensional, se proyectan puntos a lo largo de líneas de proyección se interceptan en el de centro de proyección.
En el centro de proyección está en el eje z negativo a una distancia d detrás del plano de proyección. Puede seleccionarse cualquier posición para el centro de proyección, pero la elección de una posición a lo largo del eje z simplifica los cálculos en las ecuaciones de transformación. 
Podemos obtener las ecuaciones de transformaciones de una proyección en perspectiva a partir de las ecuaciones paramétricas que describen la línea de proyección de esta línea.
X’ = x –xu
Y’ = y- yu
Z’ = z-(z + d) u

El parámetro u toma los valores de 0 a 1 y las coordenadas (x’, y’, z’) representan cualquier posición situada a lo largo de la línea de proyección. Cuando u = 0.





Las ecuaciones producen el punto P en las coordenadas (x, y, z). En el otro extremo de la línea u = 1 y se tienen las coordenadas del centro de proyección, (0, 0,-d). Para obtener las coordenadas en el plano de proyección. Se hace z’ = 0 y se resuelven para determinar el parámetro u:
Este valor del parámetro u produce la interacción de la línea de proyección con el plano de proyección en (xp, yp, 0). Al sustituir las ecuaciones, se obtienen las ecuaciones de transformación de perspectiva.
Mediante una representación en coordenadas homogéneas tridimensionales, podemos escribir la transformación de la perspectiva en forma matricial.




Las coordenadas de proyección en el plano de proyección se calculan a partir de las coordenadas homogéneas como:
[xp yp zp 1] = [xh/w yh/w zh/w 1]
Cuando un objeto tridimensional se proyecta sobre un plano mediante ecuaciones de transformaciones de perspectiva, cualquier conjunto de líneas paralelas del objeto que no sean paralelas al plano se proyectan en líneas convergentes.





No hay comentarios.:

Publicar un comentario

Introducción a la animación por computadora.

Historia, evolución y aplicación de la animación por computadora. La animación por computadora, comenzó entre los 40s y 50s, con la ...